

SERVICIO ARGENTINO DE CALIBRACIÓN Y MEDICIÓN LABORATORIO Nº 9 CERTIFICADO DE CALIBRACIÓN Nº 10 - 24713/20

Página 1 de 4

LABORATORIO DE CALIBRACIÓN SUPERVISADO POR EL INSTITUTO NACIONAL DE TECNOLOGÍA INDUSTRIAL

ELECTRICIDAD · TEMPERATURA Y HUMEDAD · TIEMPO Y FRECUENCIA

Este certificado se expide de acuerdo al convenio establecido entre el INTI y el titular del Laboratorio de Calibración.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales, los cuales representan a las unidades físicas de medida en concordancia con el Sistema Internacional de Unidades (SI).

Este certificado no podrá ser reproducido parcialmente excepto cuando se haya obtenido previamente permiso por escrito del INTI y del Laboratorio que lo emite.

Certificados de calibración sin firma y aclaración, no serán válidos.

El usuario es responsable de la recalibración del objeto a intervalos apropiados.

OBJETO Generador de funciones arbitrarias - frecuencímetro

FABRICANTE UNI-T

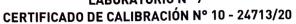
MODELO UTG 962 E

NÚMERO DE SERIE C202417179, identificado como "NET-GDF-01"

DETERMINACIONES REQUERIDAS Calibración.

FECHA DE CALIBRACIÓN 14 de octubre de 2020 **FECHA DE EMISION DEL CERTIFICADO** 15 de octubre de 2020

CLIENTE NET CALIBRACIONES S. A.


Malabia 82. San Isidro

Pcia. de Buenos Aires

SERVICIO ARGENTINO DE CALIBRACIÓN Y MEDICIÓN LABORATORIO Nº 9

Página 2 de 4

METODOLOGÍA EMPLEADA:

Comparación con patrones, de acuerdo a las instrucciones del procedimiento interno PE35 - Calibración de calibradores y fuentes. La calibración fue realizada luego de más de 2 horas después de haber encendido el instrumento para permitir una adecuada estabilización.

RESULTADOS:

Generador:

Canal	Wave	Valor generado	Valor medido	U (k=2)
CH1	Square	100,000 mHz	100,000 1 mHz	0,001 mHz
CH1	Square	1,000 000 Hz	0,999 998 Hz	0,000 002 Hz
CH1	Square	10,000 000 Hz	9,999 98 Hz	0,000 02 Hz
CH1	Square	100,000 000 Hz	99,999 8 Hz	0,000 2 Hz
CH1	Square	1,000 000 00 kHz	0,999 998 kHz	0,000 002 kHz
CH1	Square	10,000 000 0 kHz	9,999 98 kHz	0,000 02 kHz
CH1	Square	100,000 000 kHz	99,999 8 kHz	0,000 2 kHz
CH1	Square	1,000 000 00 MHz	0,999 998 MHz	0,000 002 MHz
CH1	Square	10,000 000 0 MHz	9,999 976 MHz	0,000 020 MHz
CH1	Sine	10,000 000 0 MHz	9,999 976 MHz	0,000 020 MHz
CH1	Sine	60,000 000 MHz	59,999 85 MHz	0,000 12 MHz
CH2	Square	10,000 000 0 MHz	9,999 975 MHz	0,000 020 MHz
CH2	Sine	10,000 000 0 MHz	9,999 975 MHz	0,000 020 MHz
CH2	Sine	60,000 000 MHz	59,999 85 MHz	0,000 12 MHz
CH1	Sine	17 ns	17,000 04 ns	0,000 03 ns
CH1	Sine	100 ns	100,000 3 ns	0,000 2 ns
CH1	Square	100 ns	100,000 3 ns	0,000 2 ns
CH1	Square	1,000 µs	1,000 003 µs	0,000 016 µs
CH1	Square	10,000 µs	10,000 03 µs	0,000 02 µs
CH1	Square	100,000 µs	100,000 3 µs	0,000 2 μs
CH1	Square	1,000 000 ms	1,000 003 ms	0,000 002 ms
CH1	Square	10,000 00 ms	10,000 03 ms	0,000 02 ms
CH1	Square	100,000 0 ms	100,000 2 ms	0,000 2 ms
CH1	Square	1,000 000 s	1,000 002 s	0,000 002 s
CH1	Square	10,000 0 s	9,999 99 s	0,000 1 s

SERVICIO ARGENTINO DE CALIBRACIÓN Y MEDICIÓN LABORATORIO Nº 9

Página 3 de 4

Frecuencímetro:

Valor aplicado	Valor indicado	U (k=2)
100,000 mHz	100,000 mHz	0,001 mHz
1,000 000 Hz	1,000 002 Hz	0,000 002 Hz
10,000 00 Hz	10,000 02 Hz	0,000 02 Hz
100,000 0 Hz	100,000 2 Hz	0,000 2 Hz
1,000 000 kHz	1,000 002 kHz	0,000 002 kHz
10,000 00 kHz	10,000 02 kHz	0,000 02 kHz
100,000 0 kHz	100,000 2 kHz	0,000 2 kHz
1,000 000 MHz	1,000 002 MHz	0,000 002 MHz
10,000 00 MHz	10,000 02 MHz	0,000 02 MHz
59,999 86 MHz	60,000 00 MHz	0,000 12 MHz

Amplitud de la señal:

Medición con carga de aproximadamente 1 $M\Omega$

Wave	Load	Canal	Valor generado	Frecuencia	Valor eficaz medido	U (k=2)
Sine	High Z	CH1	10 mV rms	1 kHz	9,99 mV	0,58 mV
Sine	High Z	CH1	80 mV rms	1 kHz	79,9 mV	0,6 mV
Sine	High Z	CH1	250 mV rms	1 kHz	249,9 mV	0,7 mV
Sine	High Z	CH1	1,000 V rms	1 kHz	0,997 V	0,001 V
Sine	High Z	CH1	7,000 V rms	1 kHz	6,978 V	0,008 V
Sine	High Z	CH2	10 mV rms	1 kHz	9,99 mV	0,58 mV
Sine	High Z	CH2	80 mV rms	1 kHz	80,0 mV	0,6 mV
Sine	High Z	CH2	250 mV rms	1 kHz	249,8 mV	0,7 mV
Sine	High Z	CH2	1,000 V rms	1 kHz	0,998 V	0,002 V
Sine	High Z	CH2	7,000 V rms	1 kHz	6,995 V	0,008 V

OBSERVACIONES:

Para el cálculo de la incertidumbre de medición U, se utilizó un factor de cobertura k=2, correspondiente a un nivel de confianza de aproximadamente 95 % considerando distribución normal. Se incluyen los aportes del método y el comportamiento del instrumento en el momento de la calibración. No contiene términos que evalúen el comportamiento a largo plazo del mismo.

CONDICIONES AMBIENTALES

TEMPERATURA

HRA

INSTRUMENTO

(23 ± 2) C

(37 ± 10) %HR

Nº 225

SERVICIO ARGENTINO DE CALIBRACIÓN Y MEDICIÓN LABORATORIO Nº 9

CERTIFICADO DE CALIBRACIÓN Nº 10 - 24713/20

Página 4 de 4

SICE – Servicios de Instrumentación y Control S.R.L. ha desarrollado y opera, de acuerdo a los requisitos de la Norma ISO 17025, un programa de calibración para sus referencias y patrones de medida vinculado a patrones nacionales e internacionales, que garantiza que las calibraciones y mediciones que efectúa son trazables al Sistema Internacional de Unidades (SI).

PATRONES DE REFERENCIA	INSTRUMENTO	IDENTIFICACIÓN	CERTIFICADO	
	Receptor GPS	SICE Nº 214	INTI FyM 18298	
	Calibrador	FLUKE 5700A N° 45	INTI FyM 18026	

FERNANDO JORGE TRUCCO DIRECTOR TECNICO

Fin del certificado